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{hasan.eniser,alper.sen}@boun.edu.tr
depend.cmpe.boun.edu.tr

Department of Computer Engineering
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 1 / 39

depend.cmpe.boun.edu.tr


Table of Contents

1 Introduction

2 Related Work

3 Method

4 Evaluation

5 Conclusions
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Motivation

In enterprise software systems, Service Oriented Architectures (SOA) help
companies to achieve flexibility and scalability for business requirements.

As a result of such architectures, today’s enterprise software systems have
higher number of interconnected services, interdependent teams and
heterogeneous technologies.
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Motivation

In such complex software systems, testers and developers suffer from the
conditions below:

Still evolving or uncompleted services.

Limited capacity or availability of services at inconvenient times.

Services that are controlled by a third-party that grants restricted or
costly access.

Services that are needed simultaneously by different test teams with
various set up and requirements.

Service virtualization can address some of these conditions.
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Service Virtualization

Service Virtualization is a practice to create a virtual copy of a
dependent component.

Service virtualization:

is suitable for sharing within a team and across teams.

is suitable for complex and very large (legacy) software that has many
dependencies.

can simulate performance and data characteristics of the real
component.

is useful for test data management.
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Service Virtualization

The fundamental process of service virtualization practice can be
abstracted into three phases; capture, model and simulate.
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 7 / 39



Service Virtualization

The fundamental process of service virtualization practice can be
abstracted into three phases; capture, model and simulate.

Service

Request

Response

Recorder

Interaction
Repository

Application
Under

Test
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Service Virtualization

The fundamental process of service virtualization practice can be
abstracted into three phases; capture, model and simulate.
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Service Virtualization

Services can be examined in two groups:

Stateless services and

Stateful services.

Stateful services require to keep state history to predict the response of a
request.

An example stateful service can be a shopping cart service where a user
must login first to get cart information.Actions like logging in, adding or
removing items from the cart bring the service to a new state.

Another example can be calender service where a user can create, delete or
get events with a specific label. The user also can update event
information.
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 8 / 39



Service Virtualization

Services can be examined in two groups:

Stateless services and

Stateful services.

Stateful services require to keep state history to predict the response of a
request.

An example stateful service can be a shopping cart service where a user
must login first to get cart information.Actions like logging in, adding or
removing items from the cart bring the service to a new state.

Another example can be calender service where a user can create, delete or
get events with a specific label. The user also can update event
information.
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Stateful Services

Figure: A sample interaction (request-response pair) trace.
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Contributions

In this work,

We propose techniques for automated stateful service virtualization.

We employ two machine learning techniques to obtain a virtual
service model from captured request response pairs.

We implement our techniques in a tool and validate our approach on
real services.

We compare our techniques with a state model inference tool.
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 11 / 39



Related Work

Leading software companies such as IBM, HP, CA, SmartBear, and
Parasoft provide various commercial service virtualization tools. These
tools are compared and evaluated in reports [4, 5].

Current service virtualization solutions in the literature [1, 2, 6, 7] have
limited accuracy and performance and they are applicable to stateless
services only.

Our previous work also provides a solution for stateless service
virtualization. [3]

As far as we know, there is no previous study tackling with stateful service
virtualization.
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Proposed Techniques

We introduce two approaches for stateful service virtualization.

In the first technique named Classification Based Virtualization (CBV),
we formulate the response generation problem into a classification problem.

In the second technique named Sequence-to-Sequence Based
Virtualization (SSBV), we employ sequence-to-sequence models, which
is a deep learning algorithm used in transformation of sequences from one
form to another form.

Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 14 / 39



Stateful Service Virtualization
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Classification Based Virtualization (CBV)

Classification is a supervised learning method in pattern recognition where
the task is to learn the mapping from the input to the output.

In a stateful service, a request’s response is affected by previous
interactions in the history.

Therefore, we train a classifier that learns the mapping between the history
of requests and corresponding responses.
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Classification Based Virtualization (CBV)

Inputs of this model show characteristics of categorical data, thus we
employ one-hot encoding in our approach.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ]  --- [ 1, 2, 4 ]

createEvent event1 12/02/18 200, OK getEvent event1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ]  --- [ 2, 3, 4 ]

createEvent event1 12/02/18 200, OK getEvent event1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]  --- [ 3, 7, 8 ]

createEvent event2 12/02/18 200, OK getEvent event3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ]  --- [ 4, 7, 8 ]

createEvent event4 12/02/18 200, OK getEvent event4

[

[

[

[

Attributes Outputs

Figure: An example datapoint that is provided to the classifier.

If the incoming request or the history contains a feature that is not seen in
training data, it is encoded in a way that is different from all other
features in the training data.
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Classification Based Virtualization (CBV)

We obtain best results with Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) which is a pure rule based classification
algorithm. RIPPER produces a set of IF-THEN rules for separation.

Note that, we predict more than one class and those classes can possibly
be assigned to more than two types of labels. This kind of classification is
called multioutput-multiclass classification.

This technique requires parsing the interactions to find request types,
contents and the response to be encoded. Appropriate to use it on
well-known message protocols e.g. JSON, XML.

Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 18 / 39



Sequence-to-Sequence Based Virtualization (SSBV)

A sequence-to-sequence model is a special form of Recurrent Neural
Network (RNNs), namely, Long Short Term Memory (LSTM). LSTMs
allow the usage of historical data in several steps in the future.

Embedding

how             are you? 

I am fine

Encoder Decoder

1 2 3 4 5 6

Figure: The general outline of sequence-to-sequence models consisting of an encoder and a
decoder. The sequence how are you? is transformed to sequence I am fine in the figure.
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Sequence-to-Sequence Based Virtualization (SSBV)

We start with creating a vocabulary with the letters and characters in
interaction repository. In the embedding phase the input sequence is
transformed to a list with enumeration IDs of the letters in the input.

The encoder learns to encode an input sequence into a vector and the
decoder learns to decode this vector back to the output sequence.

In training our sequence-to-sequence model, we use prefixes of interaction
traces, hence the model is learned iteratively.

Table: Sample inputs and the outputs used to train our sequence-to-sequence
model.

Input Output

createEvent event1 12/02/18 200, OK
createEvent event1 12/02/18 200, OK updateEvent 12/03/18 200, OK
createEvent event1 12/02/18 200, OK updateEvent 12/03/18 200, OK getEvent event1 event1 12/03/18 200, OK
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Evaluation

We used two services in evaluation, namely, a proprietary Airline
Ticketing Service (ATS) and Google Calendar API (Calendar).

Correctness Evaluation

CBV:

Exact Matching Ratio (EMR)

Subset Matching Ratio (SMR)

Micro averaged F-score (Fmicro)

Macro averaged F-score (Fmacro)

SSBV:

Accuracy

Performance Evaluation
Performance refers to the training time of the models for both of CBV and SSBV.
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 22 / 39



Evaluation

This is a multiclass-multilabel classification problem.

Exact Matching requires all the classes predicted for an input to be true.
Exact Matching Ratio is number of predictions satisifying exact
matching over number of all predictions.

On the other hand, Subset Matching Ratio is number of all correctly
predicted classes over number of all classes predicted.

Micro- and macro-averaged F-scores are multiclass extensions of simple
binary classification F-score.
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Evaluation

Our experimental design:

We collected 400 traces for each of the services and each trace
contains 10 interactions (request-response pairs).

We compared CBV and SSBV with another tool in the literature,
namely, EFSM Tool [8].

For CBV method, we use Weka implementation of RIPPER and for
SSBV method, we created models using Tensorflow library.

We employed 5-fold cross validation for CBV and EFSM Tool.

Experiments were run on a server with 16 GB memory and Intel Xeon
E5-2630L v2 2.40GHz CPU.
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Evaluation

Table: Parameters selected in experiments.

Method Parameters
CBV (RIPPER) minNo = 1

SSBV (Tensorflow)

hidden size = 25
batch size = 128
layers = 2
epochs = 1
iteration = 1000

EFSM Tool (J48) default

Our primary concern in choosing those parameters is maximizing the
correctness of the models.
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Evaluation

Table: Correctness results of CBV, SSBV and EFSM Tool for different values of k
where k is the number of previous interactions considered.

Service k CBV EFSM Tool SSBV

EMR(%) SMR(%) Fmacro Fmicro EMR(%) SMR(%) Fmacro Fmicro Accuracy

ATS 1 76.6 79.6 0.781 0.767 78.1 80.6 0.803 0.783 92.1
Calendar 1 70.3 78.5 0.757 0.741 70.7 76.0 0.721 0.715 93.2

ATS 5 82.7 84.3 0.813 0.798 80.0 83.7 0.806 0.786 96.5
Calendar 5 81.1 84.1 0.843 0.825 71.5 77.1 0.753 0.741 97.3

ATS 10 82.7 84.3 0.813 0.798 80.0 83.7 0.806 0.786 96.5
Calendar 10 82.0 88.5 0.871 0.866 72.1 78.0 0.767 0.751 99.3

Virtual services created using SSBV technique are accurate enough to
replace the real services when 90% or more accuracy is needed. Virtual
services created using CBV technique can replace the real services when an
exact match is not required and a high subset match is enough.
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Evaluation

Table: Performance results of CBV, SSBV and EFSM Tool for different values of
k where k is the number of previous interactions considered. Training time in
format (hh:mm).

Service k SSBV CBV EFSM Tool

ATS 1 01:42 00:01 00:06
Calendar 1 02:21 00:01 00:06

ATS 5 08:51 00:03 00:11
Calendar 5 09.54 00:03 00:14

ATS 10 14:42 00:04 00:18
Calendar 10 16:19 00:04 00:19

If time is not in the first place, SSBV method can be used to virtualize a
service since SSBV is the most successful method for generating correct
responses. If time is limited it would be logical to use CBV.

Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 27 / 39



Evaluation

Table: Performance results of CBV, SSBV and EFSM Tool for different values of
k where k is the number of previous interactions considered. Training time in
format (hh:mm).

Service k SSBV CBV EFSM Tool

ATS 1 01:42 00:01 00:06
Calendar 1 02:21 00:01 00:06

ATS 5 08:51 00:03 00:11
Calendar 5 09.54 00:03 00:14

ATS 10 14:42 00:04 00:18
Calendar 10 16:19 00:04 00:19

If time is not in the first place, SSBV method can be used to virtualize a
service since SSBV is the most successful method for generating correct
responses. If time is limited it would be logical to use CBV.
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Conclusions

Service virtualization is getting popular with the rise of multi-layered and
service oriented architectures. In this work, we developed techniques for
automatically creating stateful virtual services.

We presented machine learning based methods to create virtual services
namely CBV and SSBV.

CBV transforms response prediction problem into a classification
problem.

In SSBV, we employ sequence-to-sequence models for response
generation.
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Hasan Ferit Enişer, Alper Sen AST 2018 28 May 2018 29 / 39



Conclusions

Service virtualization is getting popular with the rise of multi-layered and
service oriented architectures. In this work, we developed techniques for
automatically creating stateful virtual services.

We presented machine learning based methods to create virtual services
namely CBV and SSBV.

CBV transforms response prediction problem into a classification
problem.

In SSBV, we employ sequence-to-sequence models for response
generation.
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Conclusions

Our evaluations demonstrate that the techniques introduced in this work
are successful in terms of the defined metrics.

In future, we plan to

reduce training time of models while preserving correctness as high as
SSBV’s correctness for stateful service virtualization.

infer the state machine of a service using recorded requests and
responses.
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QA

Thank you for listening. Questions?
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Definitions

Let Req,Res,Treq,Tres ,CReq,CRes be a finite set of requests,
responses, request types, response types, request contents, response
contents, respectively.

A request, req ∈ Req is a 2-tuple (type, content), where type ∈ Treq

and content ∈ Creq.

A response, res ∈ Res is also a 2-tuple (type, content), where
type ∈ Tres and content ∈ Cres .

An interaction is defined as a request response pair: (req, res) with
req ∈ Req and res ∈ Res.
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Definitions

We define an interaction trace, it ∈ IT as a finite sequence of
interactions observed during the execution of the service; (req1, res1),
(req2, res2), . . . , (reqn, resn).

A Interaction Repository (IR) keeps all recorded interaction traces.

History, h, of a request reqi ,
hreqi = (req1, res1), . . . , (reqi−1, resi−1), (reqi ),
that is, the trace ends with reqi and the corresponding response is
absent.

Similarly, the k history of a request reqi is shown as:
hkreqi = (reqi−k , resi−k), (reqi−k+1, resi−k+1), . . . , (reqi ).
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Definitions

The set of all histories for all requests in all interaction traces is
denoted by H.

The set of all k histories of all requests in all interaction traces is
denoted by Hk.

A stateful service, StatefulS : H → Res, is a function from the set
of histories to the set of responses.

A stateless service, StatelessS : Req → Res, is a function from the
set of requests to the set of responses.

A virtual service, VS : Hk → Ressyn is a function where Hk is k
histories of all requests, Ressyn is a finite set of synthesized responses,
where k equals to 1 for a stateless service.
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Metrics

ExactMatchRatio =
1

n

n∑
i=1

1Ei
(Pi )

SubsetMatchRatio =
1

np

n∑
i=1

p∑
j=1

1Eij
(Pij)

where

1A : X → {0, 1} defined as 1A(x) :=

{
1, if x = A

0, if x 6= A

E: expected outputs P: predicted outputs
n: the number of tests in validation phase
p: the number outputs predicted.
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Metrics

F c
macro =
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where

Y ck
ij =

{
1, if ck is actually at Yij

0, otherwise

Z ck
ij =

{
1, if ck is correctly predicted at Zij

0, otherwise

Set C = {c1, c2, . . . , cn} is the set of all classes to be predicted.
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